Changes in wingstroke kinematics associated with a change in swimming speed in a pteropod mollusk, Clione limacina.

نویسندگان

  • Brett G Szymik
  • Richard A Satterlie
چکیده

In pteropod mollusks, the gastropod foot has evolved into two broad, wing-like structures that are rhythmically waved through the water for propulsion. The flexibility of the wings lends a tremendous range of motion, an advantage that could be exploited when changing locomotory speed. Here, we investigated the kinematic changes that take place during an increase in swimming speed in the pteropod mollusk Clione limacina. Clione demonstrates two distinct swim speeds: a nearly constant slow swimming behavior and a fast swimming behavior used for escape and hunting. The neural control of Clione's swimming is well documented, as are the neuromuscular changes that bring about Clione's fast swimming. This study examined the kinematics of this swimming behavior at the two speeds. High speed filming was used to obtain 3D data from individuals during both slow and fast swimming. Clione's swimming operates at a low Reynolds number, typically under 200. Within a given swimming speed, we found that wing kinematics are highly consistent from wingbeat to wingbeat, but differ between speeds. The transition to fast swimming sees a significant increase in wing velocity and angle of attack, and range of motion increases as the wings bend more during fast swimming. Clione likely uses a combination of drag-based and unsteady mechanisms for force production at both speeds. The neuromuscular control of Clione's speed change points to a two-gaited swimming behavior, and we consider the kinematic evidence for Clione's swim speeds being discrete gaits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina.

The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its wing-like parapodia. Two basic swim speeds are observed-slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the ionic cu...

متن کامل

Cellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina1

SYNOPSIS. The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its winglike parapodia. Two basic swim speeds are observed—slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the...

متن کامل

Coordination of startle and swimming neural systems in the pteropod mollusk Clione limacina: role of the cerebral cholinergic interneuron.

The holoplanktonic pteropod mollusk Clione limacina has a unique startle system that provides a very fast, ballistic movement of the animal during escape or prey capture behaviors. The startle system consists of two groups of large pedal motoneurons that control ventral or dorsal flexions of the wings. Although startle motoneurons innervate the same musculature used during normal swimming, they...

متن کامل

The role of postinhibitory rebound in the locomotor central-pattern generator of Clione limacina.

In animals, networks of central neurons, called central-pattern generators (CPGs), produce a variety of locomotory behaviors including walking, swimming, and flying. CPGs from diverse animals share many common characteristics that function at the system level, circuit level, and cellular level. However, the relative roles of common CPG characteristics are variable among different animal species...

متن کامل

Cholinergic activation of startle motoneurons by a pair of cerebral interneurons in the pteropod mollusk Clione limacina.

The holoplanktonic pteropod mollusk Clione limacina exhibits an active escape behavior that is characterized by fast swimming away from the source of potentially harmful stimuli. The initial phase of escape behavior is a startle response that is controlled by pedal motoneurons whose activity is independent of the normal swim pattern generator. In this study, a pair of cerebral interneurons is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2011